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ABSTRACT

In this paper we present a novel dyad dimensional synthe-
sis technique for approximate motion synthesis. The method
ogy utilizes an analytic representation of the dyad’s caaist
manifold that is parameterized by its dimensional syntheaii-
ables. Nonlinear optimization techniques are then empldge
minimize the distance from the dyad’s constraint manifolé t
finite number of desired locations of the workpiece. Thelresu
is an approximate motion dimensional synthesis technibae t
is applicable to planar, spherical, and spatial dyads. Hexe
specifically address the planar RR, spherical RR and spaftial
dyads since these are often found in the kinematic struaifire
robotic systems and mechanisms. These dyads may be combine
serially to form a complex open chain (e.g. a robot) or whem-co
nected back to the fixed link they may be joined so as to form one
or more closed chains (e.g. a linkage, a parallel mechangra,
platform). Finally, we present some initial numerical dgstase
studies that demonstrate the utility of the synthesis tigcien

INTRODUCTION

The constraint manifold of a dyad represents the geometric
constraint imposed on the motion of the moving body or work-
piece. This geometric constraint on the moving body is atresu
the geometric and kinematic structure of the dyad; e.geitgth
and the location of its fixed and moving axes(i.e. lines). ddrme-
straint manifold is an analytical representation of thekspeace

of the dyad that is parameterized by the dyad’s dimensigmal s
thesis variables. Here we derive the constraint manifopatial
CCdyads in the image space of spatial displacements andeutiliz
this constraint manifold to perform dyadic dimensionaltega

sis for approximate rigid body guidance. Similarly, we deithe
constraint manifolds of sphericBRand planaRRdyads in their
respected image spaces and utilize their constraint nidaifo
perform dyadic dimensional synthesis for approximate amoti
synthesis.

The derivation of the constraint manifold in the image space
involves writing the kinematic constraint equations of thad
Hsing the components of a dual quaternion. We view these equa
ons as constraint manifolds in the image space of spaital d
placements, see [1], [2], and [3]. The result is an analltia:
resentation of the workspace of the dyad that is parametkhy
its joint variables. The synthesis goal is to vary the desiyi
ables such that all of the prescribed locations are eitfrin
the workspace, o(2) the workspace comes as close as possible
to all of the desired locations. Recall that in general fivehis
largest number of locations for which an exact solution isspo
ble for the dyads being discussed here, see [4]. Previoulsswor
discussing constraint manifold fitting for an arbitrary rham of
locations include [5], [6], [7], and [2]. All of these worksre
ploy implicit representations of the dyad constraint manifolds.
The constraint manifolds, that are known to be highly nenlin
ear [8], are then approximated by tangent hyperplanes mgusi
a standard Taylor series linearization strategy. The miigtérom
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the approximating tangent plane to the desired locatiohas t
used to formulate an objective function to be minimized. Séhe
efforts met with limited success since the constraint nudhéf
are highly nonlinear and the approximating tangent plamnsd y
poor measures of the distance from the constraint manifold t
the desired locations, [9] and [2]. For example, when sgj¥or

a spherical four-bar mechanism for 10 desired locationsi{i6]
lized 120 starting cases of which 38 converged to the salutio
In [9] a methodology to avoid the difficult nonlinear optiraiz
tion by using computer graphics to visually present the tairg
manifold to the designer was reported. The designer manuall
manipulated the synthesis variables until fla@gameterizeaon-
straint manifold was acceptably near the desired locatidhss
technique proved to be effective but was tedious to use autse
depended heavily upon the designers experience and kngavled
In [10] preliminary work that addressed the synthesis ohata
RRdyads via parameterized constraint manifold fitting was re-
ported. Here we build upon that work and utilize paramegetiz
constraint manifolds and employ nonlinear optimizatiogitid

a general numerical dimensional synthesis technique fooxp
imate motion synthesis.

We proceed by reviewing the image space of spatial dis-
placements and deriving the parameterized form of the cainst
manifold of the spatiaCC dyad. This is followed by the special
cases of spherical and planar displacements and the deniyat
of the sphericaRRand planaRRdyads, respectively. We then
present the general approximate motion synthesis proeeuha
two initial numerical examples. Future work will furtherpggre
the efficiency and robustness of the proposed methodology.

IMAGE SPACE OF SPATIAL DISPLACEMENTS

First, we review the use of dual quaternions for describing
spatial displacements. The general spatial point tram&ftion
equation may be written as,

X = [Ajx+d )
where[A] is a 3x 3 orthonormal rotation matrix representing the
orientation of a moving fram# relative to fixed framd-, and
d = (dy, dy,dz)T is the translation vector from the origin of the
frameF to the origin of frameM. Associated with the matrix
of rotation[A] is an axis of rotatios = [s, s, ;] and a rotation
angle®.

Using the translation vectat, the rotation axiss, and the
rotation angled, we can represent the spatial displacement by

the eight dimensional vectaoy, see [3] and [8],
. 0
G1 = Scsing 2
= sine
Q=S >
2

= sin9
BGB=% >

Qs = cos9
2
g — (Gt +da)
2
N (dq1 — dxgz + dyQ4)
2
@ = (—dy0a + dx02 + d;q4)
2
P Gl Sl Ll )
2

We refer toq as a dual quaternion. Note that the eight compo-
nents ofg satisfy,

G+ +gB+0—1=0
and,

0105 + G206 + 0307 + dads = O.

Because the eight componentsfatisfy two algebraic con-
straint equations they form a six dimensional algebraicifokth
that we denote athe image space of spatial displacements

Dual Quaternion Product

Given two dual quaterniong andh their product yields a
dual quaternion that represents the spatial displaceni¢tained
by the successive application of the two given displacemaie
may write the product of two dual quaternions in the follogvin
matrix form,

1 [0
gh=G*h= [ 5 [éﬂ]] h @)
where,
04 —03 92 O1
[gt] = O3 04 —0102
—02 01 094 O3
—01 —02 —93 04
and,
U8 —07 Os Os
(] = 97 98 —Us5U96
—0s U5 Os O7
—0s5 —0s —07 U8
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Alternatively, we may also write the product of two dual erat
nions as,

on=r-o=[ b} o @
where,
hgy hs —hohg
o | e he o
| hp —=hy hy h
—h; —hy —hz hg
and,
hs hy —hghg
0] = —h7 hg hs hg
| he —hs hg hy
—hs —hg —h7 hg

SPATIAL CC CONSTRAINT MANIFOLD

Next, we derive the parametric form of the constraint man-
ifold of the spatialCC dyad. The constraint manifold is derived
by expressing analytically the geometric structure thatdints
of the dyad impose on the moving body, see [2], [3], [7], arid [4
Using the image space representation of spatial displat&sme
and the geometric constraint equations of the dyad we aative
a constraint equation in the image space that is paramedicoiz
the dimensional synthesis variables of the dyad.

A spatial £ mechanism is shown in Fig. (1). A spatidal4
mechanism may be viewed as a combination of @mdyads.
For the moment let us concern ourselves with only one of the
dyads which we shall refer to as tteving dyad The drivingCC
dyad has four independent joint variabl®sdi, ¢ andc; and a
link length of (a,a). The dimensional synthesis variables of this
dyad aref, m, and(a, a) wheref andm are the dual quaternions
representing the displacements from the fixed frame to tleel fix
link frame and from the coupler link frame to the moving frame
respectively. We obtain the structure equation in the insgee
of spatial displacements by using dual quaternions to semte
the displacemer from F to M,

D = fz(6,d1)x(a,a)z(@,c1)m 5)

wherex(-,-), y(-,-), andz(-,-) are dual quaternion representa-
tions of spatial displacements either along or about®h¥, or

Figure 1. A SPATIAL 4C CLOSED CHAIN

where:g=f, h =m, andd = z(8,d1)x(a1,a)z(¢.c1) is the dis-
placement along the dyad. Finally, using Egns. (3) we espres
Eqgn. (6) as,

D(ea dlv(pa C1, r) = Cd/ = G+H_d/(a7a7 eadlv(pv Cl) (7)

wherer = [fT mT a a7 is the vector of dimensional synthesis
variables. In Eqn. (7) we have a hypersurface in the imageespa
of spatial displacements that is parameterized by the desig-
ables of the dyad. This surface is the constraint manifoldhef
spatialCC dyad parameterized by its four joint variabkgsd;,

@, andc;. Moreover, it is important to note the arrangement of
the design variables in Eqn. (7). All of the joint variablddtte
dyad have been isolated into the far right hand-side of Egn. (
This arrangement of the design variables will be exploitadrl
by the approximate motion synthesis technique. We now jice
to examine the two special cases of spatial motion; spHexich
planar displacements.

Z axes respectively. To take full advantage of the image space \AGE SPACE OF SPHERICAL DISPLACEMENTS

representation we now rewri2 as,

D=gdh (6)

First, we review the use of quaternions for describing spher
ical rigid-body displacements. A general spherical dispiaent
may be described by an axis of rotatise= [s, s, s]T and a ro-
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tation angled about said axis. Usingand® we can represent a
spherical displacement by the four nonzero components oéh d
quaterniory,

O = &sing
2
= sysing
2
Oz = szsing
2
s = cosg
2

We refer toq as a quaternion. Note that the four components
of q satisfyg? 4 3 + g3 + 3 — 1 = 0 and therefore they form a
three dimensional algebraic manifold that we denoth@smage
space of spherical displacements

0.1 Quaternion Product

Given two quaterniong andh their product yields a quater-
nion that represents the composite spherical displacem#at
may write the product of two quaternions in the following mat
form,

gh=G'h=H7g (8)

where,

Oa —03 02 01
O3 04 —0102
=02 01 94 O3
—01 —02 —093 04

G =

and,

hy hy —hyhg
—hz hs hy hy
hy —hy ha hs
—hy —hy —hz hg

H7:

SPHERICAL RRCONSTRAINT MANIFOLD

In this section we derive the parametric form of the con-
straint manifold of the spheric®Rdyad. We proceed in a sim-
ilar manner to the spati@C dyad. The constraint manifold is
derived by expressing analytically the geometric striectinat
the joints of the dyad impose on the moving body. Using the im-
age space representation of spherical displacements argkth
ometric constraint equations of the dyad we arrive at caistr

4

4
Figure 2. A SPHERICAL 4R CLOSED CHAIN

equations in the image space that are parameterized by-he di
mensional synthesis variables of the dyad.

A spherical ® mechanism consisting of tWweRdyads, one
of lengtha, is shown in Fig. (2). Note that for legibility the fixed
and moving frames are not shown in the figure (the fixed frame,
moving frame, and all of the link frames have origins coiecit
at the center of the sphere). The dimensional synthesiahlas
of this dyad ard, m, anda wheref andm are the quaternions
representing the displacements from the fixed frame to tleel fix
link frame and from the coupler link frame to the moving frame
respectively. We obtain the structure equation in the inspgee
of spherical displacements by using quaternions to reptése
displacemenb from F to M,

D = fz(8)x(a)z(¢)m ©)
wherex(-), y(-), andz(-) are quaternion representations of dis-
placements about the, Y, or Z axes respectively. To take full
advantage of the image space representation we now rerite
as,

D=gdh (10)
where:g=f,h=m, andd = z(8)x(a)z(¢) is the displacement
along the dyad. Finally, using Eqgn. (8) we express Eqn. (40) a

D(8,¢,r) =cd = G*H d'(a,8,9) (11)
wherer = [fT m" a]T is the vector of dimensional synthesis vari-

ables. In Egn. (11) we have a surface in the image space of-sphe
ical displacements that is parameterized by the desigabhlas
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of the dyad. Again, it is important to note the arrangemerthef
design variables in Eqn. (11). The two joint angles of theddya
have been isolated into the far right hand-side of the expres

IMAGE SPACE OF PLANAR DISPLACEMENTS

We now review the use of planar quaternions for describing
planar rigid-body displacements. Our approach here iseéw vi
planar displacements as a subgroupS&{3) and without any
loss of generality they are considered as occurring indheY
plane. A general planar displacement may then be descriped b
a 3x 3 orthonormal rotation matrifd] and a translation vector
d = [dx dy O]". Associated with the matrix of rotatio@ is an
axis of rotations= [0 0 1J7 and a rotation anglé. Using the
translation vectod and the rotation angleé, we can represent a
planar displacement by the four nonzero components of a dual

Figure 3. A PLANAR RRDYAD

quaterniory,
® d_2X cosg + Y sing PLANAR RRCONSTRAINT MANIFOLD
| _d_2x sing +%cosg 12 In this section we derive the parametric form of the con-
q= Q| sin® (12) straint manifold of the planaRRdyad. Again, we proceed as in
4 cos% the cases of the spati@iC and sphericaRR dyads. Using the

image space representation of planar displacements argkthe
ometric constraint equations of the dyad we arrive at cairstr
equations in the image space that are parameterized by -the di
mensional synthesis variables of the dyad.

We refer toq as a planar quaternion, see [8]. Note that the four
components of satisfyq% + qﬁ —1=0and therefore they form a

three dimensional algebraic manifold that we denoth@smage ) o
space of planar displacements A planarRRdyad of lengtha is shown in Fig. (3). Let the

axis of the fixed joint be specified by the vectomeasured in
the fixed reference frame F and let the origin of the movinméa

Planar Quaternion Product . ' ] be specified by measured in the link frame A. The dimensional
Given two planar quaterniorgsandh their productyields a  synthesis variables of the dyad arev, anda. We obtain the
planar quaternion that represents the composite planpiades structure equation in the image space of planar displacesnbgn
following matrix form, to M,
gh=G"h=H"g (13)
D = x(ux)y(uy)z(8)x(a)z(@)x(vx)y (Vy) (14)
where,

wherex(-), y(+), andz(-) are planar quaternion representations of

g 3 ?2 g displacements either along or about XY, or Z axes respec-
Gt = %3 gg g 92 tively. To take full advantage of the image space repretienta
0 0 _933 gj we now rewriteD as,
and, D =gdh (15)
hy hg —hp hy
H-— | ~hsha by ot where: g = x(uy)y(uy) is the displacement from F to O,
0 0 hy hg h = x(w)y(vy) is the displacement from A to M, and =
0 0—hsh z(B)x(a)z(@) is the displacement along the dyad from O to A.
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Performing the quaternion multiplications yields, is:

eoste d(D@,a1).9)=\/(O@.8r)-aT (DO -0 (9

/ 2sin=—*

=12 e+%p (16) ] ) )
smz In order to synthesize dyads that guide the workpiece asasear
cos—5® possible to the desired locations we require an efficiemirtiegie

for determining the image poi(8, ,r) that minimizesd. For
a given dyadinyn is determined by performing a direct search of
a two dimensional fine discretization of the constraint rfedi
with respect toh and@. Note that we exploit the separation of
variables in generating the discretizationi®, fp,r) in Egs. (7,
11, and 18) sinc&* andH ~ are constant for a given dyad (i.e.

r).

and h= a7)

N =LNNS NS
R ONRSE

It is important to note thatl is a measure of thdistance
. ) from D(&fp,r) to q and that even though this metric is useful
Finally, using Eqn. (13) we express Eqn. (15) as, for designing dyads it, like all other distance metrics, asiant
with respect to choice of coordinate system when used fdradpa
R - ! or planar displacements. For further discussions of digpleent
DO.@r)=cd =GHWH (v @8.e) (18 s see [11], [12], [13], [14], [15], [16], [17], [18]18], [20].
and [21].
wherer = [uT v @ is the vector of dimensional synthesis vari-
ables. In Eqn. (18) we have a surface in the image space of pla-
nar displacements that is parameterized by the designblasia
of the dyad. This surface is the constraint manifold of thenpt
RRdyad. Specifically, for a given fixed pivat, a given mov-
ing pivotv, and a crank length, Eqgn. (18) yields the constraint
manifold of the dyad parameterized by its two joint an@esd
¢. Again, note that the two joint angles of the dyad have been
isolated into the far right hand-side of Eqn. (18).

The Optimization Problem

Given a finite set ofi desired locations the task is to deter-
mine the dyad that guides the workpiece through, or as near as
possible, to these locations. Our approach is to utilizentee
ric discussed above to determine the distance from the reomist
manifold to each of tha desired locations, sum these distances,
and then to employ nonlinear optimization techniques tg tlae
dimensional synthesis parameters such that the totahdistis
minimized. The optimization problem then becomes:

APPROXIMATE MOTION SYNTHESIS MINIMIZE:

In this section we begin by discussing the metric used to
measure the distance between the desired image points @nd th f(r)
dyad’s constraint manifold. This is followed by a numerical
synthesis procedure for designing dyads for approximat#omo
synthesis. It is important to note that the synthesis teghnthat where:
follows is a general formulation applicable to spatial, esjtal,
and planar motion synthesis. Hence, the discussion refens-t
age points in the general sense as they may be spatial, sgheri n
or planar displacement image points. In order to represent t f(r) = .;dmi”(r’q‘)’
joint variables in a similarly general manner we utilize theal .
angle notationf = (8,d;) andgp= (¢,c;), see Bottema and Roth
(1979). Note that in the cases of spherical and planar sgathe
d]_ =c=0.

We utilize the non-linear optimization package ADS by [22fhw
the variable metric method for unconstrained minimization
[23] and [24].

The Metric

The metric used here to measure the distahbetween an
image pointD(é,fp,r) on a dyad’s constraint manifold and an
image poing associated with a desired location of the workpiece 1. A candidate design (i.e) is selected.

The Strategy
The nested optimization strategy is as follows:

6 Copyright © 2003 by ASME



2. Atwo dimensional fine discretization of the constraintima
ifold with respect tod andis generated. For each desired
location the values of the independent joint variables. @&.g
and () are optimized by utilizing the distance metric. The
minimum distance to a desired locationdgi,. Note that
an optimized set of joint variables determines the points on

the chain’s constraint manifold that are nearest each of the

desired locations. This is the inner optimization.
3. The sum of the distances to each of theesired locations
is determinedy dmin. If the distance sum is acceptable then

the design is complete. Otherwise, the distance sum and

the design vector are sent to the outer optimization to de-

termine a better candidate design and the above steps are

repeated.

CASE STUDY: PLANAR OPEN CHAIN

We now present an example of the design of a pldr@r
dyad for the ten desired locations that were used by Ravahi an
Roth to demonstrate their synthesis procedure, see ThIT{E
optimal dyad reported by Ravani and Roth was= [14.00 —
0.127, v=[-9.00 1007, anda = 8.31. This dyad has a dis-
tance sum of D3E—2. The optimal dyad determined here is:
u=[1498 —208T, v=[-1122 462", anda = 6.45. The
distance to each of the desired locations is listed in Thlafid
the distance sum is.82E — 3. Note that the distance for the syn-
thesis technique presented here is more than 5 times srieller
that for the dyad determined by the constraint manifolddiie-
tion technique of Ravani and Roth. Moreover, our implementa
tion of the methodology of Ravani and Roth required more than
50 random initial guesses of the solution to have one comverg
to the optimal dyad they reported while the technique presen
here required only one random initialization to convergéh®
reported solution.

CASE STUDY: PLANAR CLOSED CHAIN

A planar R closed chain is now created by combining, in
parallel, twoRR dyads as shown in Fig. (4). The dimensional
synthesis variables of the closed chainayg, a, g, h, b, y, and
n.

We obtain the constraint manifold of th&R4losed chain
from the constraint manifold of thBRR open chain by utilizing
the structure equation of the closed chain to ob{#f):

D(6,r)=cd =G*(uy)H (v,n)d (a6),  (20)
wherer = [u” vl a g h byn]" is the vector of dimensional
synthesis variables and

®(0) )+ arctar(%)

—-C
= +arcco$—
$1 /A2+Bz

Table 1. PLANAR LOCATIONS AND DISTANCES
Pos. # X y 0 Distance
1 0.0 0.0 400 110E-4

2 45 40 200 b555E-4

3 85 80 00 108E-3

4 130 115 -300 150E—-4

5 130 125 -350 327E-5

6 95 140 -350 423E-4

7 50 135 -300 122E-5

8 10 105 -—-150 809%E-4

9 —-10 65 00 393E-4
10 -15 30 200 476eE-5

Figure 4. A PLANAR 4R CLOSED CHAIN

where

A = 2ah—2ghcog0)
B = 2ghsin(0)
C = a® —b? 4 h? + g* — 2agcog0).

In Egn. (20) we have a curve in the image space of planar dis-
placements that is parameterized by the joint arfigbnd this
angle has been isolated into the far right hand-side of thessx
sion.

Given a finite set of desired locations the task is to deter-
mine the closed chain that guides the workpiece throughsor a
near as possible, to these locations. Our approach is treutil
the metric discussed above to determine the distance frem th
constraint manifold to each of thredesired locations, sum these
distances, and then to employ nonlinear optimization teghes
to vary the dimensional synthesis parameters such thaotak t
distance is minimized. This is the same as the methodology em
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Table 2. PLANAR LOCATIONS AND DISTANCES Four-Bar Coupler Curve

Pos.# X y 6  Distance woo o open |
1 00 00 400 154-2| | & ' Crossed
2 45 40 200 177E-2
3 85 80 00 316E-2
4 130 115 -300 12IE-2
5 130 125 -350 330E-2
6 95 140 -350 216E-2
7 50 135 -300 433E-3
8 10 105 -150 568E—3
9 -10 65 00 181E-3
10 -15 30 200 991E-3

0 2 4 6 8 10 12 14 16

Figure 5. CASE STUDY: SOLUTION COUPLER CURVES
ployed for the synthesis of open chains. The difference lsere
that@is now a known function 08 whereas in the case of open
chains bottB and@ are independent joint variables. For a given
closed chairdyin is determined by performing a direct search of
a one dimensional fine discretization of the constraint fioéahi

with respect tdB. Note that we again exploit the separation of to illustrate the methodology were presented. Efforts adeu

varlallzblefhm gener?tlnlg thet:.dlscretligtlorﬁ(% r)t; thesi way to implement the methodology for the synthesis of sjgléri
orthe same ten locatlons as discussed above We Synthesize, spatial dyads. Continuing work will advance the methodo
a planar R closed chain. The optimal closed chain is given by:

i T . T . - ogy by incorporating additional design constraints sucbrésr,
E _ élg’gnb B é?)?;] ’ 114571??41 36{ '15617_132%]9 di 8t'18’ circuit, mobility, etc. Moreover, we will soon utilize apptimate
¢ - .h ’ftﬁ d "yal i » an In ;d ; .Tbll ZethI:al‘?ince bi-invariant metrics for spatial and planar displacemeéntthe
0 €ac 1(;32Ee 1eS|red tr:)ca |on|s IS liste I?th I (k), . ?\e algorithms. Finally, efforts are underway to study the édficy
isnugg;s ®) For_cc;rizarisgr::otﬁg ?)L;lrig?ccl’ose?j é?]a?r?(rae;d;shjwn and robustness of the proposed methodology as it compares to
Ravani and Roth has a distance sum GOFE —1. other approximate motion synthesis techniques .

the constraint manifold. Moreover, these dyads are thelimgjl
blocks of platforms, parallel mechanisms, robots, andagds
and therefore the techniques presented here are diregligap
ble to their design. Two preliminary planar case studiessbeve
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