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ABSTRACT
In this paper we present a novel dyad dimensional synth

sis technique for approximate motion synthesis. The methodol-
ogy utilizes an analytic representation of the dyad’s constraint
manifold that is parameterized by its dimensional synthesis vari-
ables. Nonlinear optimization techniques are then employed to
minimize the distance from the dyad’s constraint manifold to a
finite number of desired locations of the workpiece. The reslt
is an approximate motion dimensional synthesis technique that
is applicable to planar, spherical, and spatial dyads. Here, we
specifically address the planar RR, spherical RR and spatialCC
dyads since these are often found in the kinematic structureof
robotic systems and mechanisms. These dyads may be comb
serially to form a complex open chain (e.g. a robot) or when con-
nected back to the fixed link they may be joined so as to form o
or more closed chains (e.g. a linkage, a parallel mechanism,or a
platform). Finally, we present some initial numerical design case
studies that demonstrate the utility of the synthesis technique.

INTRODUCTION
The constraint manifold of a dyad represents the geomet

constraint imposed on the motion of the moving body or wor
piece. This geometric constraint on the moving body is a result of
the geometric and kinematic structure of the dyad; e.g. its length
and the location of its fixed and moving axes(i.e. lines). Thecon-
straint manifold is an analytical representation of the workspace
e-

u

ined

ne

ric
k-

of the dyad that is parameterized by the dyad’s dimensional syn-
thesis variables. Here we derive the constraint manifold ofspatial
CC dyads in the image space of spatial displacements and utilize
this constraint manifold to perform dyadic dimensional synthe-
sis for approximate rigid body guidance. Similarly, we derive the
constraint manifolds of sphericalRRand planarRRdyads in their
respected image spaces and utilize their constraint manifolds to
perform dyadic dimensional synthesis for approximate motion
synthesis.

The derivation of the constraint manifold in the image space
involves writing the kinematic constraint equations of thedyad
using the components of a dual quaternion. We view these equ-
tions as constraint manifolds in the image space of spatial dis-
placements, see [1], [2], and [3]. The result is an analytical rep-
resentation of the workspace of the dyad that is parameterized by
its joint variables. The synthesis goal is to vary the designvari-
ables such that all of the prescribed locations are either:(1) in
the workspace, or,(2) the workspace comes as close as possibl
to all of the desired locations. Recall that in general five isthe
largest number of locations for which an exact solution is possi-
ble for the dyads being discussed here, see [4]. Previous works
discussing constraint manifold fitting for an arbitrary number of
locations include [5], [6], [7], and [2]. All of these works em-
ploy implicit representations of the dyad constraint manifolds
The constraint manifolds, that are known to be highly nonlin-
ear [8], are then approximated by tangent hyperplanes by using
a standard Taylor series linearization strategy. The distance from
1 Copyright c© 2003 by ASME



the approximating tangent plane to the desired location is then
used to formulate an objective function to be minimized. These
efforts met with limited success since the constraint manifolds
are highly nonlinear and the approximating tangent planes yield
poor measures of the distance from the constraint manifoldo
the desired locations, [9] and [2]. For example, when solving for
a spherical four-bar mechanism for 10 desired locations [6]uti-
lized 120 starting cases of which 38 converged to the solutin.
In [9] a methodology to avoid the difficult nonlinear optimiza-
tion by using computer graphics to visually present the constraint
manifold to the designer was reported. The designer manuy
manipulated the synthesis variables until theparameterizedcon-
straint manifold was acceptably near the desired locations. This
technique proved to be effective but was tedious to use and results
depended heavily upon the designers experience and knowlege.
In [10] preliminary work that addressed the synthesis of planar
RRdyads via parameterized constraint manifold fitting was r
ported. Here we build upon that work and utilize parameterized
constraint manifolds and employ nonlinear optimization toyield
a general numerical dimensional synthesis technique for approx-
imate motion synthesis.

We proceed by reviewing the image space of spatial d
placements and deriving the parameterized form of the constraint
manifold of the spatialCC dyad. This is followed by the special
cases of spherical and planar displacements and the derivations
of the sphericalRRand planarRRdyads, respectively. We then
present the general approximate motion synthesis procedure and
two initial numerical examples. Future work will further explore
the efficiency and robustness of the proposed methodology.

IMAGE SPACE OF SPATIAL DISPLACEMENTS
First, we review the use of dual quaternions for describi

spatial displacements. The general spatial point transformation
equation may be written as,

X = [A]x+d (1)

where[A] is a 3×3 orthonormal rotation matrix representing th
orientation of a moving frameM relative to fixed frameF , and
d = (dx,dy,dz)

T is the translation vector from the origin of the
frameF to the origin of frameM. Associated with the matrix
of rotation[A] is an axis of rotations= [sx sy sz]

T and a rotation
angleθ.

Using the translation vectord, the rotation axiss, and the
rotation angleθ, we can represent the spatial displacement
the eight dimensional vectorq, see [3] and [8],

q1 = sx sin
θ
2

(2)

q2 = sysin
θ
2

2

t

o

all

d

e-

is-

ng

e

by

q3 = szsin
θ
2

q4 = cos
θ
2

q5 =
(−dzq2 +dyq3 +dxq4)

2

q6 =
(dzq1−dxq3 +dyq4)

2

q7 =
(−dyq1 +dxq2 +dzq4)

2

q8 =
(−dxq1−dyq2−dzq3)

2

We refer toq as a dual quaternion. Note that the eight compo-
nents ofq satisfy,

q2
1 +q2

2 +q2
3 +q2

4−1 = 0

and,

q1q5 +q2q6 +q3q7 +q4q8 = 0.

Because the eight components ofq satisfy two algebraic con-
straint equations they form a six dimensional algebraic manifold
that we denote asthe image space of spatial displacements.

Dual Quaternion Product
Given two dual quaternionsg andh their product yields a

dual quaternion that represents the spatial displacement obtained
by the successive application of the two given displacements. We
may write the product of two dual quaternions in the following
matrix form,

gh = G+h =

[

[g+] [0]
[

g0+
]

[g+]

]

h (3)

where,

[g+] =









g4 −g3 g2 g1

g3 g4 −g1 g2

−g2 g1 g4 g3

−g1 −g2 −g3 g4









and,

[g0+] =









g8 −g7 g6 g5

g7 g8 −g5 g6

−g6 g5 g8 g7

−g5 −g6 −g7 g8









.
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Alternatively, we may also write the product of two dual quater-
nions as,

gh = H−g =

[

[h−] [0]
[

h0−]

[h−]

]

g (4)

where,

[h−] =









h4 h3 −h2 h1

−h3 h4 h1 h2

h2 −h1 h4 h3

−h1 −h2 −h3 h4









and,

[h0−] =









h8 h7 −h6 h5

−h7 h8 h5 h6

h6 −h5 h8 h7

−h5 −h6 −h7 h8









.

SPATIAL CC CONSTRAINT MANIFOLD
Next, we derive the parametric form of the constraint man-

ifold of the spatialCC dyad. The constraint manifold is derived
by expressing analytically the geometric structure that the joints
of the dyad impose on the moving body, see [2], [3], [7], and [4].
Using the image space representation of spatial displacements
and the geometric constraint equations of the dyad we arriveat
a constraint equation in the image space that is parameterized by
the dimensional synthesis variables of the dyad.

A spatial 4C mechanism is shown in Fig. (1). A spatial 4C
mechanism may be viewed as a combination of twoCC dyads.
For the moment let us concern ourselves with only one of the
dyads which we shall refer to as thedriving dyad. The drivingCC
dyad has four independent joint variables,θ, d1, φ andc1 and a
link length of(α,a). The dimensional synthesis variables of this
dyad aref, m, and(α,a) wheref andm are the dual quaternions
representing the displacements from the fixed frame to the fixed
link frame and from the coupler link frame to the moving frame
respectively. We obtain the structure equation in the imagespace
of spatial displacements by using dual quaternions to represent
the displacementD from F to M,

D = fz(θ,d1)x(α,a)z(φ,c1)m (5)

wherex(·, ·), y(·, ·), andz(·, ·) are dual quaternion representa-
tions of spatial displacements either along or about theX, Y, or
Z axes respectively. To take full advantage of the image spac
representation we now rewriteD as,

D = gd
′
h (6)
3

e

Figure 1. A SPATIAL 4C CLOSED CHAIN

where:g = f, h = m, andd
′
= z(θ,d1)x(α,a)z(φ,c1) is the dis-

placement along the dyad. Finally, using Eqns. (3) we express
Eqn. (6) as,

D(θ,d1,φ,c1, r) = cd
′
= G+H−d

′
(α,a,θ,d1,φ,c1) (7)

wherer = [fT mT α a]T is the vector of dimensional synthesis
variables. In Eqn. (7) we have a hypersurface in the image space
of spatial displacements that is parameterized by the design vari-
ables of the dyad. This surface is the constraint manifold ofthe
spatialCC dyad parameterized by its four joint variablesθ, d1,
φ, andc1. Moreover, it is important to note the arrangement of
the design variables in Eqn. (7). All of the joint variables of the
dyad have been isolated into the far right hand-side of Eqn. (7).
This arrangement of the design variables will be exploited later
by the approximate motion synthesis technique. We now proceed
to examine the two special cases of spatial motion; spherical and
planar displacements.

IMAGE SPACE OF SPHERICAL DISPLACEMENTS
First, we review the use of quaternions for describing spher-

ical rigid-body displacements. A general spherical displacement
may be described by an axis of rotations= [sx sy sz]

T and a ro-
Copyright c© 2003 by ASME
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tation angleθ about said axis. Usings andθ we can represent a
spherical displacement by the four nonzero components of a dual
quaternionq,

q1 = sx sin
θ
2

q2 = sysin
θ
2

q3 = szsin
θ
2

q4 = cos
θ
2

We refer toq as a quaternion. Note that the four component
of q satisfyq2

1 + q2
2 + q2

3 + q2
4−1 = 0 and therefore they form a

three dimensional algebraic manifold that we denote asthe image
space of spherical displacements.

0.1 Quaternion Product
Given two quaternionsg andh their product yields a quater-

nion that represents the composite spherical displacement. We
may write the product of two quaternions in the following matrix
form,

gh = G+h = H−g (8)

where,

G+ =









g4 −g3 g2 g1

g3 g4 −g1 g2

−g2 g1 g4 g3

−g1 −g2 −g3 g4









and,

H− =









h4 h3 −h2 h1

−h3 h4 h1 h2

h2 −h1 h4 h3

−h1 −h2 −h3 h4









.

SPHERICAL RRCONSTRAINT MANIFOLD
In this section we derive the parametric form of the con

straint manifold of the sphericalRRdyad. We proceed in a sim-
ilar manner to the spatialCC dyad. The constraint manifold is
derived by expressing analytically the geometric structure that
the joints of the dyad impose on the moving body. Using the im
age space representation of spherical displacements and the ge-
ometric constraint equations of the dyad we arrive at constraint
4

s

-

-

Figure 2. A SPHERICAL 4RCLOSED CHAIN

equations in the image space that are parameterized by the-
mensional synthesis variables of the dyad.

A spherical 4R mechanism consisting of twoRRdyads, one
of lengthα, is shown in Fig. (2). Note that for legibility the fixed
and moving frames are not shown in the figure (the fixed frame
moving frame, and all of the link frames have origins coincident
at the center of the sphere). The dimensional synthesis variables
of this dyad aref, m, andα wheref andm are the quaternions
representing the displacements from the fixed frame to the fixed
link frame and from the coupler link frame to the moving frame
respectively. We obtain the structure equation in the imagespace
of spherical displacements by using quaternions to represent the
displacementD from F to M,

D = fz(θ)x(α)z(φ)m (9)

wherex(·), y(·), andz(·) are quaternion representations of dis-
placements about theX, Y, or Z axes respectively. To take full
advantage of the image space representation we now rewriteD
as,

D = gd
′
h (10)

where:g = f, h = m, andd
′
= z(θ)x(α)z(φ) is the displacement

along the dyad. Finally, using Eqn. (8) we express Eqn. (10) as,

D(θ,φ, r) = cd
′
= G+H−d

′
(α,θ,φ) (11)

wherer = [fT mT α]T is the vector of dimensional synthesis vari-
ables. In Eqn. (11) we have a surface in the image space of sphr-
ical displacements that is parameterized by the design variables
Copyright c© 2003 by ASME
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of the dyad. Again, it is important to note the arrangement ofthe
design variables in Eqn. (11). The two joint angles of the dyad
have been isolated into the far right hand-side of the expression.

IMAGE SPACE OF PLANAR DISPLACEMENTS
We now review the use of planar quaternions for describin

planar rigid-body displacements. Our approach here is to view
planar displacements as a subgroup ofSE(3) and without any
loss of generality they are considered as occurring in theX −Y
plane. A general planar displacement may then be describedy
a 3×3 orthonormal rotation matrix[A] and a translation vector
d = [dx dy 0]T . Associated with the matrix of rotation[A] is an
axis of rotations = [0 0 1]T and a rotation angleθ. Using the
translation vectord and the rotation angleθ, we can represent a
planar displacement by the four nonzero components of a d
quaternionq,

q =









q1

q2

q3

q4









=











dx
2 cosθ

2 +
dy
2 sin θ

2

−dx
2 sin θ

2 +
dy
2 cosθ

2
sin θ

2
cosθ

2











. (12)

We refer toq as a planar quaternion, see [8]. Note that the fo
components ofq satisfyq2

3+q2
4−1= 0 and therefore they form a

three dimensional algebraic manifold that we denote asthe image
space of planar displacements.

Planar Quaternion Product
Given two planar quaternionsg andh their product yields a

planar quaternion that represents the composite planar displace-
ment. We may write the product of two planar quaternions in the
following matrix form,

gh = G+h = H−g (13)

where,

G+ =









g4 −g3 g2 g1

g3 g4 −g1 g2

0 0 g4 g3

0 0 −g3 g4









and,

H− =









h4 h3 −h2 h1

−h3 h4 h1 h2

0 0 h4 h3

0 0 −h3 h4









.
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Figure 3. A PLANAR RRDYAD

PLANAR RRCONSTRAINT MANIFOLD

In this section we derive the parametric form of the con-
straint manifold of the planarRRdyad. Again, we proceed as in
the cases of the spatialCC and sphericalRRdyads. Using the
image space representation of planar displacements and thege-
ometric constraint equations of the dyad we arrive at constraint
equations in the image space that are parameterized by the d-
mensional synthesis variables of the dyad.

A planarRRdyad of lengtha is shown in Fig. (3). Let the
axis of the fixed joint be specified by the vectoru measured in
the fixed reference frame F and let the origin of the moving frame
be specified byv measured in the link frame A. The dimensional
synthesis variables of the dyad areu, v, anda. We obtain the
structure equation in the image space of planar displacements by
using planar quaternions to represent the displacementD from F
to M,

D = x(ux)y(uy)z(θ)x(a)z(φ)x(vx)y(vy) (14)

wherex(·), y(·), andz(·) are planar quaternion representations of
displacements either along or about theX, Y, or Z axes respec-
tively. To take full advantage of the image space representation
we now rewriteD as,

D = gd
′
h (15)

where: g = x(ux)y(uy) is the displacement from F to O,
h = x(vx)y(vy) is the displacement from A to M, andd

′
=

z(θ)x(a)z(φ) is the displacement along the dyad from O to A.
5 Copyright c© 2003 by ASME
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Performing the quaternion multiplications yields,

d
′
=











a
2 cosθ−φ

2
a
2 sin θ−φ

2
sin θ+φ

2
cosθ+φ

2











(16)

g =









ux
2uy
2
0
1









and h =









vx
2vy
2
0
1









. (17)

Finally, using Eqn. (13) we express Eqn. (15) as,

D(θ,φ, r) = cd
′
= G+(u)H−(v)d

′
(a,θ,φ) (18)

wherer = [uT vT a]T is the vector of dimensional synthesis vari-
ables. In Eqn. (18) we have a surface in the image space of p
nar displacements that is parameterized by the design variables
of the dyad. This surface is the constraint manifold of the planar
RRdyad. Specifically, for a given fixed pivotu, a given mov-
ing pivot v, and a crank lengtha, Eqn. (18) yields the constraint
manifold of the dyad parameterized by its two joint anglesθ and
φ. Again, note that the two joint angles of the dyad have bee
isolated into the far right hand-side of Eqn. (18).

APPROXIMATE MOTION SYNTHESIS
In this section we begin by discussing the metric used t

measure the distance between the desired image points ande
dyad’s constraint manifold. This is followed by a numerical
synthesis procedure for designing dyads for approximate motion
synthesis. It is important to note that the synthesis technique that
follows is a general formulation applicable to spatial, spherical,
and planar motion synthesis. Hence, the discussion refers to im-
age points in the general sense as they may be spatial, spherical,
or planar displacement image points. In order to represent the
joint variables in a similarly general manner we utilize thedual
angle notation:̂θ = (θ,d1) andφ̂ = (φ,c1), see Bottema and Roth
(1979). Note that in the cases of spherical and planar syntheses
d1 = c1 = 0.

The Metric
The metric used here to measure the distanced between an

image pointD(θ̂, φ̂, r) on a dyad’s constraint manifold and an
image pointq associated with a desired location of the workpiece
6

a-

n

th

is:

d(D(θ̂, φ̂, r),q) =

√

(D(θ̂, φ̂, r)−q)T(D(θ̂, φ̂, r)−q). (19)

In order to synthesize dyads that guide the workpiece as nearas
possible to the desired locations we require an efficient technique
for determining the image pointD(θ̂, φ̂, r) that minimizesd. For
a given dyaddmin is determined by performing a direct search of
a two dimensional fine discretization of the constraint manifold
with respect tôθ and φ̂. Note that we exploit the separation of
variables in generating the discretization ofD(θ̂, φ̂, r) in Eqs. (7,
11, and 18) sinceG+ andH− are constant for a given dyad (i.e.
r ).

It is important to note thatd is a measure of thedistance
from D(θ̂, φ̂, r) to q and that even though this metric is useful
for designing dyads it, like all other distance metrics, is variant
with respect to choice of coordinate system when used for spatial
or planar displacements. For further discussions of displacement
metrics see [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
and [21].

The Optimization Problem
Given a finite set ofn desired locations the task is to deter-

mine the dyad that guides the workpiece through, or as near as
possible, to these locations. Our approach is to utilize themet-
ric discussed above to determine the distance from the constraint
manifold to each of then desired locations, sum these distances,
and then to employ nonlinear optimization techniques to vary the
dimensional synthesis parameters such that the total distance is
minimized. The optimization problem then becomes:

MINIMIZE:

f (r)

where:

f (r) =
n

∑
i=1

dmin(r ,qi),

We utilize the non-linear optimization package ADS by [22] with
the variable metric method for unconstrained minimizationby
[23] and [24].

The Strategy
The nested optimization strategy is as follows:

1. A candidate design (i.e.r ) is selected.
Copyright c© 2003 by ASME
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2. A two dimensional fine discretization of the constraint man-
ifold with respect toθ̂ andφ̂ is generated. For each desired
location the values of the independent joint variables (e.g. θ̂
and φ̂) are optimized by utilizing the distance metric. The
minimum distance to a desired location isdmin. Note that
an optimized set of joint variables determines the points o
the chain’s constraint manifold that are nearest each of th
desired locations. This is the inner optimization.

3. The sum of the distances to each of then desired locations
is determined;∑dmin. If the distance sum is acceptable then
the design is complete. Otherwise, the distance sum an
the design vector~r are sent to the outer optimization to de-
termine a better candidate design and the above steps
repeated.

CASE STUDY: PLANAR OPEN CHAIN
We now present an example of the design of a planarRR

dyad for the ten desired locations that were used by Ravani ad
Roth to demonstrate their synthesis procedure, see Tbl. (1). The
optimal dyad reported by Ravani and Roth was:u = [14.00 −
0.12]T , v = [−9.00 1.00]T , anda = 8.31. This dyad has a dis-
tance sum of 1.03E−2. The optimal dyad determined here is:
u = [14.98 − 2.08]T , v = [−11.22 4.62]T , anda = 6.45. The
distance to each of the desired locations is listed in Tbl. (1) and
the distance sum is 3.62E−3. Note that the distance for the syn-
thesis technique presented here is more than 5 times smallerthan
that for the dyad determined by the constraint manifold lineariza-
tion technique of Ravani and Roth. Moreover, our implementa-
tion of the methodology of Ravani and Roth required more tha
50 random initial guesses of the solution to have one converge
to the optimal dyad they reported while the technique presented
here required only one random initialization to converge tothe
reported solution.

CASE STUDY: PLANAR CLOSED CHAIN
A planar 4R closed chain is now created by combining, in

parallel, twoRRdyads as shown in Fig. (4). The dimensional
synthesis variables of the closed chain areu, v, a, g, h, b, γ, and
η.

We obtain the constraint manifold of the 4R closed chain
from the constraint manifold of theRRopen chain by utilizing
the structure equation of the closed chain to obtainφ(θ):

D(θ, r) = cd
′
= G+(u,γ)H−(v,η)d

′
(a,θ), (20)

where r = [uT vT a g h b γ η]T is the vector of dimensional
synthesis variables and

φ(θ) = ±arccos(
−C√

A2 +B2
)+arctan(

B
A

)

7

n
e

d

re

n

Table 1. PLANAR LOCATIONS AND DISTANCES

Pos. # x y θ Distance

1 0.0 0.0 40.0 1.10E−4

2 4.5 4.0 20.0 5.55E−4

3 8.5 8.0 0.0 1.08E−3

4 13.0 11.5 −30.0 1.50E−4

5 13.0 12.5 −35.0 3.27E−5

6 9.5 14.0 −35.0 4.23E−4

7 5.0 13.5 −30.0 1.22E−5

8 1.0 10.5 −15.0 8.09E−4

9 −1.0 6.5 0.0 3.93E−4

10 −1.5 3.0 20.0 4.76E−5

v

u

M

A

O

F

γ
θ

φ
ha

g

b

η

Figure 4. A PLANAR 4RCLOSED CHAIN

where

A = 2ah−2ghcos(θ)

B = 2ghsin(θ)

C = a2−b2 +h2 +g2−2agcos(θ).

In Eqn. (20) we have a curve in the image space of planar dis-
placements that is parameterized by the joint angleθ and this
angle has been isolated into the far right hand-side of the expres-
sion.

Given a finite set ofn desired locations the task is to deter-
mine the closed chain that guides the workpiece through, or as
near as possible, to these locations. Our approach is to utilize
the metric discussed above to determine the distance from the
constraint manifold to each of then desired locations, sum these
distances, and then to employ nonlinear optimization techniques
to vary the dimensional synthesis parameters such that the total
distance is minimized. This is the same as the methodology em-
Copyright c© 2003 by ASME



Table 2. PLANAR LOCATIONS AND DISTANCES

Pos. # x y θ Distance

1 0.0 0.0 40.0 1.54E−2

2 4.5 4.0 20.0 1.77E−2

3 8.5 8.0 0.0 3.16E−2

4 13.0 11.5 −30.0 1.21E−2

5 13.0 12.5 −35.0 3.30E−2

6 9.5 14.0 −35.0 2.16E−2

7 5.0 13.5 −30.0 4.33E−3

8 1.0 10.5 −15.0 5.68E−3

9 −1.0 6.5 0.0 1.81E−3

10 −1.5 3.0 20.0 9.91E−3

ployed for the synthesis of open chains. The difference hereis
thatφ is now a known function ofθ whereas in the case of open
chains bothθ andφ are independent joint variables. For a given
closed chaindmin is determined by performing a direct search o
a one dimensional fine discretization of the constraint manifold
with respect toθ. Note that we again exploit the separation o
variables in generating the discretization ofD(θ, r).

For the same ten locations as discussed above we synthe
a planar 4R closed chain. The optimal closed chain is given by
u = [13.72 −2.64]T , v = [−10.41 4.64]T , a = 6.26, g = 8.18,
h = 8.09, b = 5.08, γ = 153.73, andη = 157.16. The distance
to each of the desired locations is listed in Tbl. (2), the distance
sum is 1.532E−1, and the coupler curve of the linkage is show
in Fig. (5). For comparison, the optimal closed chain reported by
Ravani and Roth has a distance sum of 7.295E−1.

CONCLUSIONS
In this paper we have presented a novel dyad dimension

synthesis technique for approximate motion synthesis for afinite
number of desired locations of a workpiece. The methodolog
utilizes an analytic representation of the dyad’s constraint man-
ifold that is parameterized by its joint angles. Nonlinear opti-
mization techniques are then employed to minimize the distance
from the dyad’s constraint manifold to a finite number of desired
locations of the workpiece. Algorithms for the synthesis ofboth
open and closed chains are presented. The result is an appri-
mate motion dimensional synthesis technique that is applicable
to the design of planar, spherical and spatial dyads. It is impor-
tant to note that the technique presented utilizes a direct search of
the discretization of the constraint manifold and thereby avoids
the difficulty of previous techniques that required linearization of
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the constraint manifold. Moreover, these dyads are the building
blocks of platforms, parallel mechanisms, robots, and linkages
and therefore the techniques presented here are directly applica-
ble to their design. Two preliminary planar case studies that serve
to illustrate the methodology were presented. Efforts are under-
way to implement the methodology for the synthesis of spherical
and spatial dyads. Continuing work will advance the methodol-
ogy by incorporating additional design constraints such asorder,
circuit, mobility, etc. Moreover, we will soon utilize approximate
bi-invariant metrics for spatial and planar displacementsin the
algorithms. Finally, efforts are underway to study the efficiency
and robustness of the proposed methodology as it compares to
other approximate motion synthesis techniques .
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